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If G is a group, H is a subgroup of G, and K is a subgroup of H, then K is a subgroup of G.
If G is a group, and H and K are subgroups of G, then their intersection H ∩K is a subgroup of G.
A permutation α ∈ Sn is called even if it can be written as a product of an even number of transpositions;

otherwise it is called odd. Exactly half of the permutations in Sn are even.
Set

An = {α ∈ Sn | α is even}.
Then An is a subgroup of Sn, called the alternating subgroup.

Let H be a subgroup of Sn. Then either H consists of even permutations or exactly half of the permu-
tations in H are even. We prove this now.

Problem 1. Let H ≤ Sn. Show that either H ≤ An or |H| = 2|H ∩An|.
Solution. If G is a group, x ∈ G, and Y ⊂ G, define

xY = {xy | y ∈ Y }.

Suppose that H is not contained in An, and let α ∈ H rAn. Let K denote the set of even permutation
in H, and let L denote the set of odd permutations in H. Then K ∪ L = H, and K ∩ L = ∅. Thus
|H| = |K|+ |L|.

Since H is closed under composition, αK ⊂ H and αL ⊂ H. Since the product of an odd and and even
permutation is odd, and the product of two odd permutations is even, we see that actually αK ⊂ L and
αL ⊂ K. Consider the map

f1 : K → L given by f1(κ) = ακ,

and the map
f2 : L→ K given by f2(λ) = αλ.

Since left multiplication by α−1 produces an inverse for these maps, it is clear that both are injective.
Therefore there exists a bijective functions K → L, showing that these two sets have the same cardinality.
This shows that |H| = 2|K|.

Let ρ, τ ∈ Sn be given by

ρ = (1 2 . . . n) and τ =

{
(2 n)(3 n− 1) . . . (n+1

2
n+3
2 ) if n is odd;

(2 n)(3 n− 1) . . . (n2
n
2 + 2) if n is even.

Set
Dn = {ε, ρ, ρ2, . . . , ρn−1, τ, τρ, τρ2, . . . , τρn−1} ⊂ Sn.

Then Dn is a subgroup of Sn, called the dihedral subgroup. The proof that this is a subgroup follows from
the identity τρ = ρn−1τ . Clearly, |Dn| = 2n.

Set Kn = Dn ∩ An. Then Kn is a subgroup of Sn, and either Kn = Dn or Kn is exactly half of Dn.
Thus |Kn| = 2n, or |Kn| = n.

Problem 2. Let n = 4.

(a) Compute ρ and τ in this case.

(b) Show that K4 is a noncyclic abelian subgroup of S4.

Solution. We have
ρ = (1 2 3 4) and τ = (2 4).

Also,
K4 = {ε, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}.

Every element of K4 has order two, so K4 is not cyclic (of order four). Computation shows that the group
is abelian.



Problem 3. Let n = 5.

(a) Compute ρ and τ in this case.

(b) Show that K5 = D5.

Solution. We have
ρ = (1 2 3 4 5) and τ = (2 5)(3 4).

Since ρ is an even permutation, so are all of its powers. Moreover, all of the reflections fix exactly one
point and transpose two pairs of points; thus they are even. Since each member of K5 is even, we have
K5 = D5.

Problem 4. Let n = 7.

(a) Compute ρ and τ in this case.

(b) Show that K7 is a cyclic subgroup of S7.

Solution. We have
ρ = (1 2 3 4 5 6 7) and τ = (2 7)(3 6)(4 5).

Since ρ is even, all of its powers are in K7. Moreover, since n is odd, each of the reflections fixes exactly one
point, and so is the product of three transpositions, and is therefore odd. So, K7 = 〈ρ〉 is cyclic.

Problem 5. Try to generalize the previous problems: what can you say about Kn in the following cases?

(a) n ≡ 0 (mod 4)

(b) n ≡ 1 (mod 4)

(c) n ≡ 2 (mod 4)

(d) n ≡ 3 (mod 4)

Solution. We will discuss (a) and (c) together.
(a) and (c) Suppose n is even. Then ρ is an odd permutation, but ρ2 is even, and exactly half of 〈ρ〉 is

contained in An.
Also, τ fixes two points, so τ moves (n/2) − 2 pairs of points; and τρ does not fix any points (it is

reflection through the midpoints of opposite edges), so τρ moves n/2 pairs of points.
If n ≡ 0 (mod 4), then n/2, so τρ is even, and τ is odd, in which case Kn = 〈ρ2, τρ〉.
If n ≡ 2 (mod 4), then n/2− 2 is even, so τ is even, and τρ is odd, in which case Kn = 〈ρ2, τ〉.
In either case, exactly half of the reflections are in Kn. It turns that in either case, Kn is isomorphic to

Dm, where m =
n

2
.

(b) Suppose that n ≡ 1 (mod 4). Since n is odd, ρ is an even permutation. All reflections fix exactly

one point, so they move
n− 1

2
pairs of points. Since n ≡ 1 (mod 4),

n− 1

2
is even, so all of these reflections

are in An. Thus, Dn ⊂ An, and Kn = Dn.
(d) Suppose that n ≡ 3 (mod 4). Since n is odd, ρ is an even permutation. All reflections fix exactly one

point, so they move
n− 1

2
pairs of points. Since n ≡ 3 (mod 4),

n− 1

2
is odd, so none of these reflections

are in An. Thus, Kn = 〈ρ〉 is cyclic.



Let n be a positive integer, and let Nn = {k ∈ Z | 1 ≤ k ≤ n}.

Problem 6. Let n ∈ Z with n ≥ 4 and n ≡ 2 (mod 4). Let m =
n

2
. Find an explicit isomorphism

Φ : Kn → Dm.

Solution. In this case, the action of Kn on Nn is identical to the action of Dm on Nm.
To picture this, imagine a regular hexagon, with an equilateral triangle inscribed inside, touching the

odd vertices. Then ρ2 will rotate this triangle, and the even reflections will transpose odd vertices. We can
explicitly give the details.

Define f : Nn → Nm by f(i) =
i+ 1

2
. For each α ∈ Kn, define φα : Nm → Nm by φα(j) = f(α(f−1(j))).

Define Φ : Kn → Dm by Φ(α) = φα. Then Φ is an isomorphism.

Problem 7. Let n ∈ Z with n ≥ 4 and n ≡ 0 (mod 4). Let m =
n

2
. Find an explicit isomorphism

Φ : Kn → Dm.

Proof. Here, the even reflections to not preserve the parity of the vertex number. For example, in K8, the
reflections do not fix any points, and so they swap even and odd vertices. For example, (1 8)(2 7)(3 6)(4 5)

is an even reflection.
However, we can view the action of K8 on the sides of a regular octagon as identical to the action of D4

on the vertices of a square. Visually, imagine a square inscribed in a regular octagon such that the vertices
are the midpoints of alternating sides. Once this is imagined, we can explicitly write the function.

Let X = {{i, i+ 1} | i = 1, 3, . . . , n− 1} be the collection of consecutive pairs of points in Nn; view this
as the set of sides of the regular n-gon. If α ∈ Dn, and x ∈ X, then α(x) ∈ X, since rigid motions of a
regular n-gon will preserve its sides. Now Kn acts on X just as Dm acts on Nm.

Let f : X → N by f(x) = (maxx)/2. This is bijective. For α ∈ Kn, define φα : Nm → Nm by
φα(j) = f(α(f−1(j))). Define Φ : Kn → Dm by Φ(α) = φα. Then Φ is an isomorphism.


