CA'	tegory Theory	
Dr.	Paul L. Bailey	

Homework 3 Solutions Saturday, September 21, 2019 Name:

If G is a group, H is a subgroup of G, and K is a subgroup of H, then K is a subgroup of G.

If G is a group, and H and K are subgroups of G, then their intersection $H \cap K$ is a subgroup of G.

A permutation $\alpha \in S_n$ is called *even* if it can be written as a product of an even number of transpositions; otherwise it is called *odd*. Exactly half of the permutations in S_n are even.

Set

$$A_n = \{ \alpha \in S_n \mid \alpha \text{ is even} \}.$$

Then A_n is a subgroup of S_n , called the *alternating subgroup*.

Let H be a subgroup of S_n . Then either H consists of even permutations or exactly half of the permutations in H are even. We prove this now.

Problem 1. Let $H \leq S_n$. Show that either $H \leq A_n$ or $|H| = 2|H \cap A_n|$.

Solution. If G is a group, $x \in G$, and $Y \subset G$, define

$$xY = \{xy \mid y \in Y\}.$$

Suppose that H is not contained in A_n , and let $\alpha \in H \setminus A_n$. Let K denote the set of even permutation in H, and let L denote the set of odd permutations in H. Then $K \cup L = H$, and $K \cap L = \emptyset$. Thus |H| = |K| + |L|.

Since H is closed under composition, $\alpha K \subset H$ and $\alpha L \subset H$. Since the product of an odd and and even permutation is odd, and the product of two odd permutations is even, we see that actually $\alpha K \subset L$ and $\alpha L \subset K$. Consider the map

$$f_1: K \to L$$
 given by $f_1(\kappa) = \alpha \kappa$,

and the map

$$f_2: L \to K$$
 given by $f_2(\lambda) = \alpha \lambda$.

Since left multiplication by α^{-1} produces an inverse for these maps, it is clear that both are injective. Therefore there exists a bijective functions $K \to L$, showing that these two sets have the same cardinality. This shows that |H| = 2|K|.

Let $\rho, \tau \in S_n$ be given by

$$\rho = (1 \ 2 \ \dots \ n) \quad \text{and} \quad \tau = \begin{cases} (2 \ n)(3 \ n-1)\dots(\frac{n+1}{2} \ \frac{n+3}{2}) & \text{if } n \text{ is odd;} \\ (2 \ n)(3 \ n-1)\dots(\frac{n}{2} \ \frac{n}{2}+2) & \text{if } n \text{ is even} \end{cases}$$

Set

$$D_n = \{\epsilon, \rho, \rho^2, \dots, \rho^{n-1}, \tau, \tau\rho, \tau\rho^2, \dots, \tau\rho^{n-1}\} \subset S_n$$

Then D_n is a subgroup of S_n , called the *dihedral subgroup*. The proof that this is a subgroup follows from the identity $\tau \rho = \rho^{n-1} \tau$. Clearly, $|D_n| = 2n$.

Set $K_n = D_n \cap A_n$. Then K_n is a subgroup of S_n , and either $K_n = D_n$ or K_n is exactly half of D_n . Thus $|K_n| = 2n$, or $|K_n| = n$.

Problem 2. Let n = 4.

- (a) Compute ρ and τ in this case.
- (b) Show that K_4 is a noncyclic abelian subgroup of S_4 .

Solution. We have

$$\rho = (1 \ 2 \ 3 \ 4)$$
 and $\tau = (2 \ 4).$

Also,

$$K_4 = \{\epsilon, (1 \ 2)(3 \ 4), (1 \ 3)(2 \ 4), (1 \ 4)(2 \ 3)\}$$

Every element of K_4 has order two, so K_4 is not cyclic (of order four). Computation shows that the group is abelian.

Problem 3. Let n = 5.

- (a) Compute ρ and τ in this case.
- (b) Show that $K_5 = D_5$.

Solution. We have

 $\rho = (1 \ 2 \ 3 \ 4 \ 5)$ and $\tau = (2 \ 5)(3 \ 4)$.

Since ρ is an even permutation, so are all of its powers. Moreover, all of the reflections fix exactly one point and transpose two pairs of points; thus they are even. Since each member of K_5 is even, we have $K_5 = D_5$.

Problem 4. Let n = 7.

- (a) Compute ρ and τ in this case.
- (b) Show that K_7 is a cyclic subgroup of S_7 .

Solution. We have

$$\rho = (1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7)$$
 and $\tau = (2 \ 7)(3 \ 6)(4 \ 5).$

Since ρ is even, all of its powers are in K_7 . Moreover, since *n* is odd, each of the reflections fixes exactly one point, and so is the product of three transpositions, and is therefore odd. So, $K_7 = \langle \rho \rangle$ is cyclic.

Problem 5. Try to generalize the previous problems: what can you say about K_n in the following cases?

- (a) $n \equiv 0 \pmod{4}$
- (b) $n \equiv 1 \pmod{4}$
- (c) $n \equiv 2 \pmod{4}$
- (d) $n \equiv 3 \pmod{4}$

Solution. We will discuss (a) and (c) together.

(a) and (c) Suppose n is even. Then ρ is an odd permutation, but ρ^2 is even, and exactly half of $\langle \rho \rangle$ is contained in A_n .

Also, τ fixes two points, so τ moves (n/2) - 2 pairs of points; and $\tau \rho$ does not fix any points (it is reflection through the midpoints of opposite edges), so $\tau \rho$ moves n/2 pairs of points.

If $n \equiv 0 \pmod{4}$, then n/2, so $\tau \rho$ is even, and τ is odd, in which case $K_n = \langle \rho^2, \tau \rho \rangle$.

If $n \equiv 2 \pmod{4}$, then n/2 - 2 is even, so τ is even, and $\tau \rho$ is odd, in which case $K_n = \langle \rho^2, \tau \rangle$.

In either case, exactly half of the reflections are in K_n . It turns that in either case, K_n is isomorphic to D_m , where $m = \frac{n}{2}$.

(b) Suppose that $n \equiv 1 \pmod{4}$. Since *n* is odd, ρ is an even permutation. All reflections fix exactly one point, so they move $\frac{n-1}{2}$ pairs of points. Since $n \equiv 1 \pmod{4}$, $\frac{n-1}{2}$ is even, so all of these reflections are in A_n . Thus, $D_n \subset A_n$, and $K_n = D_n$.

(d) Suppose that $n \equiv 3 \pmod{4}$. Since *n* is odd, ρ is an even permutation. All reflections fix exactly one point, so they move $\frac{n-1}{2}$ pairs of points. Since $n \equiv 3 \pmod{4}$, $\frac{n-1}{2}$ is odd, so none of these reflections are in A_n . Thus, $K_n = \langle \rho \rangle$ is cyclic.

Let n be a positive integer, and let $\mathbb{N}_n = \{k \in \mathbb{Z} \mid 1 \le k \le n\}.$

Problem 6. Let $n \in \mathbb{Z}$ with $n \geq 4$ and $n \equiv 2 \pmod{4}$. Let $m = \frac{n}{2}$. Find an explicit isomorphism $\Phi: K_n \to D_m$.

Solution. In this case, the action of K_n on \mathbb{N}_n is identical to the action of D_m on \mathbb{N}_m .

To picture this, imagine a regular hexagon, with an equilateral triangle inscribed inside, touching the odd vertices. Then ρ^2 will rotate this triangle, and the even reflections will transpose odd vertices. We can explicitly give the details.

Define $f: \mathbb{N}_n \to \mathbb{N}_m$ by $f(i) = \frac{i+1}{2}$. For each $\alpha \in K_n$, define $\phi_\alpha: \mathbb{N}_m \to \mathbb{N}_m$ by $\phi_\alpha(j) = f(\alpha(f^{-1}(j)))$. Define $\Phi: K_n \to D_m$ by $\Phi(\alpha) = \phi_\alpha$. Then Φ is an isomorphism.

Problem 7. Let $n \in \mathbb{Z}$ with $n \geq 4$ and $n \equiv 0 \pmod{4}$. Let $m = \frac{n}{2}$. Find an explicit isomorphism $\Phi: K_n \to D_m$.

Proof. Here, the even reflections to not preserve the parity of the vertex number. For example, in K_8 , the reflections do not fix any points, and so they swap even and odd vertices. For example, (1 8) (2 7) (3 6) (4 5) is an even reflection.

However, we can view the action of K_8 on the *sides* of a regular octagon as identical to the action of D_4 on the *vertices* of a square. Visually, imagine a square inscribed in a regular octagon such that the vertices are the midpoints of alternating sides. Once this is imagined, we can explicitly write the function.

Let $X = \{\{i, i+1\} \mid i = 1, 3, ..., n-1\}$ be the collection of consecutive pairs of points in \mathbb{N}_n ; view this as the set of sides of the regular *n*-gon. If $\alpha \in D_n$, and $x \in X$, then $\alpha(x) \in X$, since rigid motions of a regular *n*-gon will preserve its sides. Now K_n acts on X just as D_m acts on \mathbb{N}_m . Let $f : X \to \mathbb{N}$ by $f(x) = (\max x)/2$. This is bijective. For $\alpha \in K_n$, define $\phi_\alpha : \mathbb{N}_m \to \mathbb{N}_m$ by

Let $f : X \to \mathbb{N}$ by $f(x) = (\max x)/2$. This is bijective. For $\alpha \in K_n$, define $\phi_\alpha : \mathbb{N}_m \to \mathbb{N}_m$ by $\phi_\alpha(j) = f(\alpha(f^{-1}(j)))$. Define $\Phi : K_n \to D_m$ by $\Phi(\alpha) = \phi_\alpha$. Then Φ is an isomorphism.